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Abstract. Multistep Bose—Einstein condensation of an ideal Bose gas in anisotropic harmonic
atom traps is studied. In the presence of strong anisotropy realized by the different trap frequency
in each direction, the finite size effect dictates a series of dimensional crossovers into lower-
dimensional excitations. Two-step condensation and the dynamical reduction of the effective
dimension can appear in three separate steps. When the multistep behaviour occurs, the occupation
number of atoms excited in each dimension is shown to behave similarly as a function of the
temperature. Multistep behaviours can be easily controlled by changing the degree of anisotropy.

1. Introduction

Although Bose—Einstein condensation (BEC) has been an active topic of research in condensed
matter physics for decades [1-4], recent revival of interests in this field is mainly credited to
the achievement in atom molecular optics; most recent laser cooling and evaporative cooling
techniques in magnetic and optical atom traps enable us to realize BEC of a weakly interacting
gas in a controlled way [5—7]. The weakly interacting nature of a gas allows us to handle the
phenomena and make theoretical predictions with high accuracy. The rapid progress in this
field also stimulates other areas in physics such as high-energy physics and astrophysics [8].

For atom trap experiments, since atoms are trapped in a finite geometry, finite size as well as
finite number effects play a significantrole in the condensation process. The conventional phase
transition picture defined in the thermodynamic limit has to be re-examined or modified [9—-16].
One significant change due to finiteness is the existence of BEC in low-dimensional systems.
Recently, quasi-low-dimensional systems prepared by optical or magnetic trapping devices
have been actively discussed [17,18]. The study of such systems provides an ideal test for the
theory of finite size, low-dimensional systems in a controlled environment.

The critical behaviour of a finite size system [19-21] is characterized by the effective
infrared dimension (EIRD) of the system [22,23]: near the critical point when the contribution
of the lowest mode of a system dominates, its symmetry properties can be shown to be
equivalent to a lower-dimensional one. The system, in such a case, is said to possess an
EIRD. Varying the relative size (or shape) of the potential changes the infrared behaviour and
hence the EIRD of the system.

Dimensionless parametens = Bhw; (B = 1/kpT) for a harmonic oscillator potential
with natural frequencies; (i = 1, 2, 3) characterize the degree of anisotropy and finite size
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effects. With respect tg;, we can classify the dynamical behaviour of the system into the
following four cases dependent on the degree of anisotropy:

Casel ni,n2,n3>1— EIRD=0
Case2 ni,n2>1>n—EIRD=1
Case3 1 >1>ny,n3—> EIRD=2
Case4 1> n1,1n2,n3 — EIRD=3.

As the temperature is lowered, dynamical dimensional reduction of the system characterized
by the decrease of effective dimension can be observed. Particularly, in the presence of
maximal anisotropy > n1 > 12 > n3, EIRD decreases one by one from three to zero at the
temperaturéz T = hw;, hwp andhws.

While the picture described above is of the generic nature of any quantum system, for
particles that obey Bose statistics, the dimension of the dynamics of excited particles can also
change in the form of condensation. BEC can also occur in separate steps in the presence of
anisotropy reducing the effective dimension attributed to the excited modes of the system by
one, two, or three at a time [10]. In this sense, the dimensional crossover associated with both
the multistep condensation and the reduction of effective dimension due to frozen degrees of
freedom can manifest themselves in a similar way in a finite system in spite of their different
origin. This is the main subject discussed in this paper.

For the system with a finite size and number of atoms, the reduced chemical potential
¢ = B(Ep— ) does not strictly vanish at the critical temperature. Only in the thermodynamic
limit, ¢ vanishes at the critical temperature and the specific heat develops the discontinuity
in the derivative at the critical point [20]. In an isotropic system, the thermodynamic limit
can be uniquely defined as discussed in many textbooks [4]. However, if we allow anisotropy
in the system, there are three different ways of taking a thermodynamic limit. The three-
dimensional limit: w1, w,, wz — 0, while keepingNV wiw,ws fixed. In this case, the system
shows the critical behaviour of three dimensions and the corresponding three-dimensional
critical temperaturelsp can be defined. The two-dimensional limit,ws; — 0, while
keepingNwows3 fixed. The system shows the critical behaviour of two dimensions and the
corresponding two-dimensional critical temperatliyg can be defined. The one-dimensional
limit: if we simply takews — 0, while keepingV w3 fixed, the critical temperature vanishes.
However, if we tunews a little slower such thab; ~ log(2N)/N — 0, the one-dimensional
critical temperaturd;p can still be defined in this modified sense. We will discuss this issue
again in section 3.1.

In the presence of strong anisotropy, the whole particle spectrum naturally splits into
zero-, one-, two-, and three-dimensional excitations. The ground state is viewed as a zero-
dimensional excitation. Let us denote the number of modes excited in the corresponding
directions asVy, N1, N> and N3, respectively. Am-dimensional condensation temperature
T,p (n = 1, 2, 3) can be defined as the temperature at which alktilimensionally excited
modes are saturated:

three-dimensional N = N3(T3p) Q)
two-dimensional N = N3(T2p) + No(T>p) (2)
one-dimensional N = N3(T1p) + No(T1p) + N1(T1p). €)

One can see that the condensation temperatures defined above are equivalent to the critical
temperatures if the appropriatedimensional thermodynamic limit is taken. This splitting of

the excitation spectrum gives the basis of the rest of our analysis. Similar splitting was proposed
in [10] for liquid helium. In a liquid, however, an occupation number of particles excited in a
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particular direction is extremely difficult to observe. Furthermore, the validity of this splitting

is by no means obvious for a strongly interacting system such as liquid helium. On the other
hand, such a quantity is directly observable in atom trap experiments and, therefore, it deserves
careful study. Moreover, as shown in section 3, occupation nunieré, andNs behave as if

they were independent quantities and show similar behaviour when multistep crossover occurs.
This result indicates the independent nature of eécfor strongly anisotropic systems.

Forarealistic systemwher, w;, w,, ws, are all finite and fixed, the physically observable
temperature of interest is the crossover temperature at which the deviation from the bulk critical
behaviour sets in. The crossover temperature is achieved when the correlation length reaches
the size of the system since further ordering in this direction will be suppressed at this point.
In the strongly anisotropic system in whieby, w, > w3 holds, Thp, Top <K T3p gives
the necessary (but not sufficient) condition for the multistep condensation: the condensation
into two, one-dimensional modes and into the ground state can occur in separate steps. The
multistep condensation was discussed for a nonrelativistic ideal gas in a cavity [10], in a
harmonic trap [24], and a relativistic ideal gas in a cavity [25].

In section 2, we study the excitation spectrum of anisotropic harmonic oscillators. We
focus our attention to three different cases in which the equipotential surface has a prolate,
oblate, and maximally anisotropic ellipsoidal shape. In section 3, we show that each case
shows qualitatively different condensation behaviour. After introducing the condensation
temperatures defined in the bulk limit, we focus on the multistep crossover behaviour of
excited modes between different effective dimensions through BEC or dynamical reduction of
EIRD. In particular, in a maximally anisotropic potential, the dimensional reduction can occur
in three steps. In such a case, we show that each dimensional component behaves in a similar
manner as a function of the reduced temperature defined near the corresponding crossover
temperature. The possible effect of interactions is also discussed.

This paper deals with a nonrelativistic ideal Bose gas in anisotropic magnetic traps, and
a companion paper deals with a relativistic ideal Bose gas in rectangular cavities [25]. Our
calculations are focused on the occupation number and condensation temperature for each
dimension. The effect of an interaction in the condensation process has been discussed many
timesinthe literature. In principle, it can affect the dynamics of condensation considerably. For
a weakly interacting gas, however, the averaged quantities such as condensation fractions and
critical temperatures are relatively insensitive to the presence of interactions and the corrections
to bulk ideal-gas values are well explained by the finite number correction [26,27]. On the other
hand, interaction effects are known to affect higher moments such as specific heat significantly,
and are considered to be essential to explain the observed specific heat data. Throughout the
rest of the paper, we use units such that= % = 1 for brevity. The results in ordinary units
can be easily reproduced by replacing> hw andT — kpT.

2. Anisotropic harmonic oscillator and excitation spectrum

For an anisotropic harmonic oscillator with oscillator frequencig§ = 1,2, 3), the
Hamiltonian has the form
3
H=3) (pf+ofx)). (4)
i=1

In this paper, we study cases where the frequenciese rationally relatedt. Whence there
exist integers; (i = 1, 2, 3) such thaiw;k; = w(i = 1, 2, 3), wherew = Q (k1kok3)'/3 and

T This assumption of rationality is rather for the technical convenience and will not affect the physical results of this
paper. Other methods can be found, for example, in [14,24,28].
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w1wrwz = Q3.
The energy level of an anisotropic harmonic oscillator is given by

3
E, = Zwi(ni + %) (5)
i=1

We can also define the energy level modil@asn; = k;v; + A;, wherev; = [n;/k;], and []
denotes the integer part of the number inside the bracket. Then equation (5) can be written as
3
E,=oM+Y wh+Eg (6)
i=1
whereM = v1 + v, + v3. The first term in equation (6) corresponds to the isotropic harmonic
oscillator Hamiltonian (see also appendix A). The ground state ergyrbgs the familiar form
w1+ wy + w3

Eo=——0——. ()

2.1. Excitation spectrum

2.1.1. Prolate shape potential.First we discuss the case of anisotropy corresponding to
w1 = wy > w3 (we simply choose herlg = k, = 1 < k3). In such a case, the equipotential
surface has a prolate shape. For a strong anisofr9py 1, two-step condensation can occur.
In such a casey = w; = w, and the energy eigenvalue is

E, = oM + w3i3 + E. (8)

For sufficiently large values @k, the whole energy spectrum can be split into the energy
level of the ground statéE, = 0), one-dimensionally excited stat€ég, = nzws; nz =

1,2,...), two-dimensionally excited stat€g, = niw; +nzws;n1 =1,2,...,n3 =0, 1.
andnowy +nsws,np=1,2,...,n3=0,1,...),and three-dirr_lensionally excited statés &
niwy +nowy +nsws;ny,np =1,2,...,n3=0,1,...),whereE, = E, — Eg = oM +w3)3is

the energy measured from the ground state. The number of particles excited in these dimensions
are given, respectively, by
<

No = 9
0= ©
2
Ny = Z T (10)
1‘13:].
Nz = ]Z: o eﬂ1ﬂ1+n3713 . Z Z eMﬂ1+)»3713 -z (11)
ni=.1,n3z=
o
(M — 1)M b4
N3 = Z eﬂ1?11+n2712+"3773 —z - Z Z eMm*isnz — 7 (12)
ni=ny=1n3=0 =0 M=,

wherez = e/~ js the (reduced) fugacny. The factor 2 in equation (11) accounts for the
symmetry between the first and second axes. These expressions can be further simplified in
the following manner.

For one dimension,

o0 —n o I~
7€ 3Mn3 7'e n3
M= 2:1 1—zenem 1213 1—e'm (13)
n3= =

e*'?3/2
_ 81z ) N
n3

(14)
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whereg,(z) = Y o2, 2 < is the Bose—Einstein function. We used equation (B4) to obtain the
second line from the first line.
For two-dimensional excitations, making use of equation (B2), equation (11) can be written
as
ks3—1 oo o

Ny=2 M7 e ! (Mnitisns)
=233 3w

3=0M=1I[=1

e im
=2
; (1—elmy(l— e )

00 Alg=l(1—n3)/2 < 1\ & e lm=—m)/2
— — | k3 + _> O

= [Pmns =1 12
2g2(ze_(”1_’73)/2) k3go(ze_(’71_”3)/2)

- mms 12

To obtain the third line from the second line, we used equation (B5).
For three-dimensional excitations, equation (12) gives

N3 = X:l i i (M — 1)M 1 @ (M1+isna)

=0M=2I=

S / e*zzﬂl

Z
(1—etm)2(1 — ein)
e lm- n3/2) 0 e lm—ns/2)

=2 + ...

(15)

- Z 130303 ~ 12ns
_ g3(ze™ (m— n3/2)) B gl(ze_("l_”3/2))
nins 1213

(16)

2.1.2. Oblate shape potential.Next we discuss the case of anisotropy corresponding to an
oblate shape potential > w, = w3 (k1 = 1 < k, = k3). In this casep = w; and

En = oM + wy(Ar + A3). a7

The number of particles excited in these dimensions are given, respectively, by
Z

No = 18
0= 18)
00
2z
Np=) T (19)
np=1
S M -1z
Nz = Z e!127/2+n3773 — Z eMn — 7 (20)
npy=1n3=1
0 z o 00 (M +1)z
N3 = Z @umtnznztngns — 7 - Z Z eumtMnz _ (21)
nlzl,n2=0,n3=0 n1=l M=0

where the factor 2 in equation (19) is due to the symmetry between the second and third axes.
Compared with equation (14), we obtain

—12/2
2g1(z€7"/%) N
n2

Ny = (22)
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in the present case.
The number of particles excited two-dimensionally on.thexs plane can be written as

o0 00 00 Zlelenz gZ(Ze ﬂ2)
Ny = (M — 1)Zleian2 = (23)
For three-dimensional excitations, equation (21) gives
e—l?h
Ns = ZZ (1— e m)(1— ein)2
_ 83(zeTMEE)  gn(ze M) (n +2n2) (24)
nnj 24 nnj

2.1.3. Maximally anisotropic potential. For anisotropiess; > wy > w3z With k1 = 1 «
ko < k3, w = w1 and

E_n = oM + wrAy + w3A3. (25)

The number of excited modes in the corresponding dimensions can be defined by

o0

Z
Ny = Zl T (26)

n3=

o0

<
Nz = Z @2metngns — (27)
ny=1,n3=0

00

kg*
Z
No= D, Gowwmmn =7 = 2 Z
3 @umtnznztngns _ 7 h
2=013=0

111:l,n2:n3:0

M(M +1) 2
eMurtianztisns — 7

(28)

fMg

For the two-dimensional case, following

D

quation (15),

k—1 oo o0

Z Z lee*l(Mflz"')%ﬂs)

=0M=11[=1

>
[

o0

el
Z (1 — e )1 — e'ns)

=1
Z z la— n2/2 < 1) i Zle*ﬂz/z
_ + = +...
1?non3 k)= 24
_ ga(ze/?) _ Kkgo(ze™ /%) +
1213 24

(29)

wherex = k3/ k.
For three-dimensional excitations, equation (28) gives

eim

Na= 7
’ I;Z (1 —emy(l—eln)(1—elm)

00 Zle—l(771_'72_7]3)/2 B o0 Zle—l(i’]l—nz—ng,)/z (n% + 7]% + 7]%) .\
—  PBninans ~ 24 ninans
_ gg(ze‘(”l‘nz_”3)/2) B gl(ze—(nl—nz—na)/z) ('7%"‘7754'77%) .

n1n213 24 n1n213

(30)
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3. Finite size effects and dimensional crossover behaviour

3.1. Bulk behaviour

The bulk three-dimensional condensation temperature is defined in the thermodynamic limit
n, = 0@ =1,2,3)andN — oo, while n1/n3 andn,/n3 remain fixed. The dominant term
is given by the first term iv3 and the critical temperature satisfies

3

T.
N=—30 (3. (31)
w123
Therefore
Nwiwrws 13
Tap = [ ———= . 32
* < 16 > (32)

The two-dimensional limit is given by,, n3 — 0, N — oo, butn; > 1. In such a case, the
dominant term in particle number ¥, and the critical temperatuf® is defined by

T2 T3
N = 2D gz(e—(wz+w3)/2T20) - ig(g) +.... (33)
[OF1OK] w2w3
Thus we have
Nwows 12
Tor — ] 34
= ( £ ) =

For one-dimensional limigz — 0, N — oo, butny, n, > 1, the dominant term in particle
number isN1. The condensation temperature is defined by

T
N = ijgl(e_w:"/ZTw). (35)

To leading order imgl, equation (14) can be approximated s ~ a% log i—z Thus the
one-dimensional condensation temperatisgis defined by

T; 2T
N = 22 jog =22 (36)
w3 w3
which gives
Na)g
Tip = 37
1D = 092N (37)

for large N. Note that in the thermodynamic limN — oo, while Nws remains fixed,I1p
vanishes.

In figure 1, we plotlp, Top andTsp as a function of the anisotropy parametegrIn an
isotropic and weakly isotropic casg(~ 1), Tsp < Tip, Top, and the condensation is directly
into the ground state. As anisotropy is increased 10°%), Tip, Top < T3p is achieved.
This is the regime where various multistep behaviours can take place.

In terms of the bulk condensation temperatures we obtained in section 33} as
Nws3/10g(2N), Top = (Nwows/2¢(2)Y2, andTzp = (Nwiwsws/c(3))Y3, the conditions
(A) Thp < Top, (B) Top < T3p, and (C)T1p < T3p give constraints foks andk as follows:

N¢(2)
(log(2N))?

2 NZ(3)?
(B) k3/k > . (2)23

(A) &>

(38)

(C) kak > W
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Condensation Temperature

_32 L | 1 | 1 | 1 1

0.0 1.0 2.0 3.0 4.0 5.0
log(w1/w3)

Figure 1. The condensation temperatuf@g (solid line),7>p (dashed line), and;,, (dot-dashed
line) are shown as a function &5. N = 10%, w1 = 0.5 andk is also varied akzz = k3. The
logarithmic scale is used for both axes.

Since (B)T>p < Tsp impliesTsp < w1, three-step BEC never occurs in harmonic traps. In
figure 2, different condensation behaviours corresponding to various anisotropy parameters
w1/wo and wy /w3 are shown. The vertical axis corresponds to the prolate-shape potential
studied in section 3.2.1 (this case was studied in [24]). In such a potential, two-step BEC can be
seen. The horizontal axis corresponds to the oblate-shape potential discussed in section 3.2.2,
where we show that there is no multistep condensation in this case. The more general class
of anisotropic case will be discussed in section 3.2.3. The combined effect of dynamical
dimensional reduction and two-step BEC in such a potential can appear in three steps.

3.2. Dimensional crossover and condensation

For a highly anisotropic trap, the three-dimensional crossover temperggyrshould be
reached when the correlation length is in the order of the size of the ground state wavefunction
in the most confining direction. Spreading of the wavefunction can be characterized by
L; = J/h/mw; (fori = 1,2,3) [29,30]. Hence the above condition is equivalent to
E(T3,) ~ Aoas//13 ~ L1, Whereyyp = h/~/2emkT is the thermal de Broglie wavelength,
andts = |T5;, — Tapl/ T3p. This will give us the crude estimate @f;, as

kst (3)\Y3
35\/( )> T3p.

T2y — Top| ~ ( (39)

3.2.1. Two-step condensationFor a prolate-shape potential discussed in section 2.1.1, we
expand the whole particle spectrum with respecttandns and obtain

N =Nog+ N1+ Ny+ N3
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5 |- 1D BEC .

S

log (w2/w3)
w

" 2 Step 3 Step i
2 -
1 b 3D BEC 2D BEC |
0 |
0 1 2 3
log (wl/w2)

Figure 2. Different condensation behaviours corresponding to different anisotropy parameters
w1/wp andwy /w3 are indicated. N = 10% is chosen. The logarithmic scale is used for both
horizontal and vertical axeg.(2) and¢(3) are approximated as one for simplicity.

—13/2 —11/2 — 11
g1(ze )+282(Ze )+83(Zze )+...
n3 n1n3 nina
81(2) + 2g2(2) N gsz(z)
n3 nmns  nins
go@n3 281()m gk
- - = - - 5—m
ny 2 nmns 2 nins
2 2 3
L802) (nl) La@m  g@n

= go(z) +

= go(2) +

e — 40
mns \ 2 nfns 2 ninz 6 (40)
This expression can be simplified to give
Nng = 83(22) L8R s1@ N (41)
1 n 2
Writing z = e~ and expanding equation (41) with respecptgives
Nn3=§(§)+§(2)—§(2)¢+--- (42)

2  om n?

where we used an asymptotic expansion of the Bose—Einstein fungtien®) ~ ¢(3) —
t(a+3(E —loga)a?+- - - andga(e™) ~ ¢(2) + (loga — D)o + - - - for smalle [4].

The correlation lengtl of an ideal Bose gas is given §y= Ay 5/2/7 ¢ [31]. In terms
of scaling parameters (T) = ¢(T)/n;(i = 1, 2, 3), the above argument implies tha},, is
achieved when1(73;,) = c1, wherecy is some constant in the order of unity. Inserting this
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into equation (42) gives
¢(3) + ¢(2)(1—c1) .

N = at T =T5,. 43
7’/%773 mns 3D (43)
Thus we have
Ly _ g, =1 0@ (k) (44)
Tsp 3 ¢®¥\N)

This result gives the same correction term proportionédpN %2 as in equation (39) obtained
by heuristic arguments.

The one-dimensional condensation temperafuygds defined in equation (35) in the limit
of smallnz and the vanishing reduced chemical potentidinite size effects off; , originate in
finiteness of bothys andg. At one-dimensional crossover temperatiifg, correlation length
reaches the size of the ground state wavefunction in the least confining direction, namely, along
the third axis in the present case. THWg,},) ~ L3, or equivalentlyxs(T;},) = ¢z = O(1).
Then from the second line in equation (40), we obtain

@ (L+2c3)n3/2 20, (e~ (kat2c3)nz/2 e (kst+ca)ns
_ & ) . 282( ), 83 ) oo

N > (45)
n3 nns nns
In the limit n3 — 0, only the first term dominates and we obtain the crossover temperature as
T * T 2T
N = — 22 |og(1 — e M*Za)es/2Tipy — 1D |gg 1D 46
w3 o ) w3 1+ 2c3)w3 (46)
For largeN, this gives
Na)3
T = . 47
7 log[2N /(1 + 23)] “n
Note thatT};,, > Tip holds.
The conditions (C) in equation (38) and < T1p are satisfied if
N N
k3 (48)

(log2N))¥2 ~ " = (og(2n))’
In such a case, two-step condensation leading to the condensation into the ground state can be
seen whereas the system is effectively still three-dimensional. In figures 3—6, the condensation
fractionsN; /N (i = 0, 1, 2, 3) as a function of temperature are plotted. At high temperature,
three-dimensionally excited states dominate, as expected from the density of states which grows
asM?, whereM is the number of degeneracy of an isotropic harmonic oscillator appeared in
equation (6).

In the isotropic case (figure 3), condensation is only into the ground state. Due to the
finite size effects, condensation already starts before the critical temperature is reached. In a
strongly anisotropic case, asin figure 4, two-step condensation can bdggeetermines the
onset of condensation into one-dimensionally excited state$;;Athe ground state fraction
is negligibly small. Condensation into the ground state will not start @itlis reached.

In the multistep process peculiar to the highly anisotropic system, when the correlation
length reaches the size of the system, the dynamics shows the crossover to the low-dimensional
one before the actual phase transition occurs. In this sense, the critical temperature is never
observed in such a process and the quantity directly relevant to the observation is the crossover
temperature, the temperature at which the finite size correction sets in. For practical purposes,
this is often replaced by including the finite size correction as the term proportional to the
power of I/ N whereas the chemical potential is set to the ground state energy [32]. Strictly
speaking, however, since the chemical potential never reaches the ground state energy in the
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Ni/N

0.00 1.00 2.00
T/Tc

Figure 3. The condensation fractionsy/N (solid curve),N1/N (dashed curve)N,/N (dot-
dashed curve)N3/N (dotted curve) as a function of the temperature for an isotropic trap are
plotted. The same symbols are used in figures 417= 0.1, w» = 0.1, w3 = 0.1 andN = 1000

are chosenT, = 0.94 is the three-dimensional critical temperature in equation (32).

finite system, the meaning of this correction has some ambiguity. The difference between the
crossover temperature and the finite size-corrected critical temperature in the present axially
symmetric trap case is given by

AT ¢ (2 (k3\"®
Tsp 3 ¢(3)%3 <N> '

While this is fairly small for an isotropic or weakly anisotropic cagel’ / T3p ~ 0.024 for

ks = 1, it is no longer so for a strongly anisotropic cagerl’ / Tsp ~ 0.24 forkz = 10° as

used in figure 4, where; = 1, N = 10* for both cases. The ordinary finite size correction

significantly underestimates the results in the latter caset. For these reasons, we focus our

discussions on crossover temperatures in this paper. We should also note that there is a slight

amount of ambiguity in the choice of (i = 1, 2, 3). In general, the correlation lengthis a

complicated function of the temperature away from the critical value and the reliable choice is

obtained by the numerical fitting. We will simply peit (i = 1, 2, 3) = 1 for our comparison

with numerical data for brevity.

(49)

3.2.2. Two-dimensional condensation.For an oblate shape potential discussed in
section 2.1.2, assuming >> 1 we obtain

N =No+ N1+ N+ N3
—12/2 —12
2g1(z€ )_l_gz(Ze2 )+...,
n2 U

T Since the boundary condition in the harmonic potential corresponds to the one in the Neumann boundary condition,
the surface correction increases the density of states and hence decreases the critical temperature.

= go() + (50)
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1.0

0.8 - f

Ni/N

02 L // // \\\ i

0.0 P ! ‘ ! ‘ !
T/Tc

Figure 4. The condensation fractions for a prolate shape anisotropic trap are plated.0.3,

w2 = 0.3, w3 = 0.0003 andN = 10* are chosen. Two-step condensation occurs in this case.
T, = T3}, = 0.61 from equation (44) and};, = 0.34 from equation (47)c; andcs are set equal

to one. Note that EIRE= 3 during the whole two-step BEC process.

The two-dimensional crossover temperatdi can be defined when the correlation
length reaches the size of the ground state wavefunction along the second axis. Thus we have
£(T3;,)) ~ Ly or equivalentlyx,(75;,) = ¢, = O(1). Then from equation (50) we obtain

gz(e—(1+¢’z)nz) N zgl(e—(1+2€z)nz/2) .

N = 5 (51)
UR 12
atT = T;,. Expanding in terms of,, we obtainZ};, as
N $@ 1+cz (+cploglyz(l+cp)]  2loglnace)
n’ n2 2 n2
_ @ T
a)% w?
T3p T3p
x| (L+cp) +(L+cy)logl —=—=—— ] +2log +-- (52)
wr(1+co) w2C2
for 2, n3 <« 1. For largeN andc, = 1, this gives
=1 (sim) ()
D 1+ — lo . 53
Top ve@) N\ 52)

As explained in section 3.1, condensation inpdoes not occur in harmonic traps. For
an oblate shape potential, the system dynamics freezes out along the first Axis af;.
Therefore, the dynamics of the systemTat < w; is two-dimensional. Ordinary two-
dimensional BEC can still be observed as long7as < w;. This condition requires
ks > (N/¢(2))Y?. In figure 5, two-dimensional BEC in this parameter regime is shown.
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Ni/N

Figure 5. The condensation fractions for an oblate shape anisotropic trap are ploited.0.3,

w2 = 0.002,w3 = 0.002 andN = 10° are chosenT, = T, = 0.057 is the two-dimensional
crossover temperature in equation (583)is set equal to one. The system shows the dimensional
reduction from three to two dimensions&t= w; = 0.3. Hence the accumulation of particles
into N from N3 is not the result of condensation. &t < wj, the system shows the ordinary
two-dimensional condensation into the ground state.

3.2.3. Three-step dimensional reductionf-or a general class of the anisotropic potential
discussed in section 2.1.3, a three-step process can be observed. We expaigd \gitich
respect toj, 2, n3 and obtain

N =Nog+ N1+ Ny+ N3

g1(ze7"3/2) . g2(z€7M2/2) g3(ze~n—n2=13)/2)

K
= go(2) + — —go(z€7/?) +
13 n2n3 24 n17M213
—(n1—n2—n3)/2 2490242
_81(ze )<'71 n2 '73>+._.
24 n1M213
_ 83R) |, 82@) &G m—m—ns, (54)
n1n2n3 MMz N1n2n3 2

Expanding equation (54) with respectgo= — logz, gives

4E) +;<2>( 1,1, 1 )_z<2)¢_._
ninz  n2n3 N3N ninzns

N_

= 55
n112n3 2 (55)

As discussed in section 3.2.44(75;,) = c1 = O(1) holds atT = T3;,. Inserting this into
equation (55) gives

3 2 1 1 1 1
N=2® +§()[ + (-—c1)+—]+... at T=T5,. (56)
nnznz 2 Lmnz n2nz \2
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Ni/N

Figure 6. The condensation fractions for a maximally anisotropic trap are plotted. Three-step
dimensional reduction can be seen. = 0.3, w2 = 0.02,w3 = 0.0004 andV = 5 x 103 are used.

T3, = 0.17, T}, = 0.06 andT;;,, = 0.02 are crossover temperatures defined in equations (57),
(60) and (47), respectivelyc; = ¢ = c3 = 1 are used. The system shows the dimensional
reduction atT = w; = 0.3 similar to figure 5, and behaves two-dimensionally nEax 0.3.
Therefore, the accumulation of particles im¥g from N3 is not the result of condensation. For

T < w1, the system shows two-step BECT}, into one-dimensionally excited states and'g

into the ground state.

Thus we have

(57)

Tip _ 4, 0= 12 (@) (koks\"?
Tsp 3 ¢\ N .
The crossover temperatufg;, associated with two-dimensional BEC can be defined if
TS, < wit. Then from equation (54) we obtain
—12(1/2+c2) —12(1/2+c7) —11/2 _ g m/2
_ &(e ) | 8u(€ ), ® L logd —e™m
1213 13 n11213 240213

atT = T;,. Whenn, becomes large, only the first two terms dominate and we obtain the
crossover temperature as

_ (2 1/2+c N (1/2 +c2)log[n2(1/2 +c2)]  log(nzc2) .

N

(58)

N
n2n3 n3 n3 13
_T5e@ T3
- w3 B w3
x [(1/2 +cp) +(1/2 +¢2) log (L) +log <h>} +oon (59)
w2(1/2 +c7) wC2

t Thus the system behaves effectively two-dimensional (BRE) atT = T5,.



On multistep Bose—Einstein condensation in anisotropic traps 501

Ni/N

-1.0 -0.5 0.0
log(T)

Figure 7. The logarithmicT scale is used for the three-step behaviour shown in figure 6. The same
parameters as in figure 6 are used.

for 2, n3 <« 1. For largeN andc, = 1, we simply have

P e1ed (i) eo(its)
<L 1+ — | . 60
- s\ve) N\co (60)

The one-dimensional crossover temperatlifg has the same form as in the prolate shape
potential case.

The conditions (A) and (B) in equation (38) give the constraints for anisotropy parameters
for three-step behaviour to be observed:
. N (2

(log(2N))?
i N
¢(2)log(2N)’
If Top <« T3p holds, since it also implie%,p, <« w1, excitations along the first axis will be
dynamically suppressed & < w; making the system effectively two-dimensional before
BEC sets in. Furthermore, i1, <« T»p is also satisfied, BEC occurs in two steps, one at
T»p and the other alp. In figure 6, the above senario of three-step dimensional reduction
is numerically realized. Three-dimensionally excited modes dominant at higher temperature
are dynamically suppressed&t< w;, followed by two-step BEC. When the condensation
into the ground state sets in, the effective dimension of the system is still two. From the form
of critical temperatures in equations (44) and (53), we see that high anisotropy and the small
number of atoms have similar consequences.
It is useful to see how the weak interaction effect modifies the above argumentst. The
shift of the critical temperature due to the interaction effect is given in [333115} /T3p ~

(61)
3

T We recover ordinary units in this discussion for quantitative comparison with other literature.
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aNY8/L, wherea is the s-wave scattering length,= /A/m<. The shift due to finite size
is given in equation (57) a& T3,/ Tsp ~ (ks/N)¥3. For a reasonable choice of parameters,
N = 5000,k3 = 10,a/L = 0.001, we obtainATi%/ T3, ~ 0.003 andATs;,/ Tsp ~ 0.13.
Thus the interaction effect is negligible compared to the finite size correction.

Comparing the zero-point energy in the most confining direction with the interaction
energy, ifw; > noU, whereng is the ground state density afd = 47h%a/m, the criteria
for the system to behave as effectively two-dimensional is still givewby- T. For the
choice of valuenoU/kz ~ 110 (nK) for a sodium atom, this gives; > noU ~ 10*
(1 s71). We should note that the collision effect even in such a case cannot be strictly two-
dimensional [34]; for high energy atoms, the interaction vertex has the form of the three-
dimensional one. Nevertheless, these effects will be still suppresseddol; and a small
number of particles, whereas the finite size correction behavesTgs/ Top ~ (k/N)Y?
and AT}, /Tip ~ 1/logN. Therefore, the effect of interaction on the particle number and
the critical temperature remains small and the system is still expected to show the multistep
behaviour under these conditions. At w1, the most notable difference would be the absence
of long-range order due to interactions in this effectively two-dimensional system. In this case,
the system can show quasi-condensation, the condensation with the fluctuating phase at near
T»p. The true condensation with the constant phase will be acheived at lower temperature.
One example of a quasi-two-dimensional system, a gas of spin-polarized hydrogen in liquid
helium, is known to exhibit Kosterlitz—Thouless transition [35, 36]. Manifestation of the
crossover from BEC to Kosterlitz—Thouless transition [37] during the multistep process is of
particular interest to study. However, even in the presence of such a transition, we expect that
the particle occupation number which is insensitive to the phase information will still behave
similar to the ideal gas. The interaction contributions used above are calculated within the
framework of the mean field theory. Thus we conclude, apart from the critical regime where
the mean field theory fails, interactions do not essentially alter the multistep process for a small
number of atoms in highly anisotropic traps.

From the arguments given in this section, the sum of most relevant terms in equation (54)
around each crossover temperature will give the simple expression of the total number of atoms
as

g1(e7?) + g2(e7?) + g3(e™?)

13 nanz mnans
Making use of the fact thap varies as a nonvanishing function of the temperature for
the finite system, we defin®z(A) = g3(e*?)/ninon3. The relation for the Bose function
9580 (€7%) = —g,_1(e7%) [4] allows us to write

g2(€%) 1 dN3)

N = No+ N1+ Np+ N3~ go(e™%) + (62)

No(A) = =
ﬂze%) X1 dzl
1 d°N3(
3 x1x2  dA
1 d®N3(n)
No(A) = go(e?) = .
0(d) = go(e™) P TE
Thus the total number of atoms is given by
1 d®N3(=1) 1 d®N3(—=1) 1 dN3(-1)
N = + + — + N3(=1). 64
X1X2X3 d)LS X1X2 d)LZ X1 dx 3( ) ( )
At T ~ T3, x1 ~ 1 andxz, x3 > 1, then we have
d
N ~ —N3(=1) + N3(—1). (65)

da
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At T ~ TS, x2 ~ 1,x1 < Landxz > 1, we have

d
N ~ aNz(—l) + No(—1). (66)

At T ~ Tj,, x3 ~ Landxy, xo < 1, we have
d
N ~ a1\/1(—1) + N1(—1). (67)

These results suggest that each condensation fragtibehaves similarly as a function of the
temperature in the neighbourhood of its characteristic temper&tyréVe simply write this

fact asN;(T) ~ F(T/T/,)) fori = 1,2, 3, whereF is a function independent af It also

implies that each component has a similar shape in the logaritfirsrale. The occupation
number of each dimension is plotted in the logarithfiiscale in figure 7. Note that this
derivation relies on the special property of the Bose function which determines the density of
states of an ideal gas trapped in the harmonic potential. Whether the same result holds or not
in other systems with different density of states is not obvious.

In conclusion, finite size effects on the BEC of an ideal gas in a strongly anisotropic
trap give rise to various different types of multistep behaviour depending on the degree of
anisotropy. In an isotropic trap, BEC into the ground state always begins while the system is
effectively three-dimensional, i.&3p > w1 = wy, = ws. In an anisotropic trap, in addition to
the BEC which may occur in multisteps, EIRD will also decrease in steps as the temperature
is lowered. The combined effect of these leads to the appearant multistep behaviour. The
existence of the intermediate condensation into one-dimensional space can be traced back
to the logarithmic divergence of the one-dimensional occupation number in equation (36).
This means that, when the trap is loosened in one direction, the particles tend to occupy
gquantum states along this direction with more likelihood than along other directions. Thus
one-dimensionally excited modes in this direction will dominate multidimensional excitations
spread in other direction®f > N», N3) and the thermodynamic behaviour of such a systemis
characterized b¥;, even though effective dimension of the system is still three. Note that the
same mechanism is responsible fortloaexistencef BEC in one-dimensional harmonic trap
in the ordinary thermodynamic limit. For the same reason, the intermediate condensation into
two-dimensionally excited modes can be observed in a rectangular cavity [10, 24], Tispere
does not exist in the naive thermodynamic limit. Three-step BEC can only take place in such
a system. Away from the thermodynamic limit, the temperature dependence of the chemical
potential aroundlip, Top and T3p causes similar crossover behaviours in condensation
fractionsN;, N, and N3 as a function of the reduced temperature.

Atom trap experiments probing the two-step BEC are realizable in loffe—Pritchard-type
magnetic traps or in optical dipole traps [24]. A similar type of device can be used to study
multistep behaviour discussed here, although it is difficult to achieve BEC in a maximally
anisotropic trap with our current cooling technique. Further progress in a trapping device
may be required. The basic mechanism of multistep dimensional crossovers discussed here
can be applied to many other bosonic systems and should be amenable to future experimental
verification. Quasi low-dimensional systems realized in the optical lattice or waveguide are a
promising option for testing such processes [17,18]. Also of interest is the kinetics of multistep
behaviour where the correlation length and the thermal de Broglie wavelength are related in a
nontrivial manner. This is currently under investigation.
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Appendix A. Dynamical symmetry in anisotropic harmonic oscillator

It is known that dynamical symmetry of anisotropic harmonic oscillators has the reducible
representation which can be written as the multiple of irreducible representati®éi )
symmetry, the symmetry of isotropic harmonic oscillators.

For a givenh = (A1, A2, A3), we can define a set of many boson annihilators [38] as

for i=1,2,3 (A1)

wheren; = a;rai are boson number operators. Many boson annihilators and creators satisfy
the following commutation relations:

[A}, AT =5, (A2)

Rewriting Hamiltonian (4) as

3 3
4] 1
=g 2 AL AT =5 ) etk =20 =D (A3)

the corresponding energy eigenvalue becomes
3
E,=oM+3)— 3> ok —2x - 1. (A4)
This gives the alternative method to derive energy eigenvalues given in equation (6).
Thus the reducible representation (4) of the original Hamiltonian leads to the cluster

of isotropic harmonic oscillators. With this decomposition, it is possible to understand the
mechanism of condensation in anisotropic traps in terms of condensation in isotropic traps [39].

Appendix B. Mathematical formulae

By taking derivatives of

ad 1
e Mn = — (B1)
MZ::O l—em
with respect to) on both sides, we obtain
e 1
Me M1 = B2
Z (1—e)? (82)
and
i M2e M1 — M (B3)

(1—em3
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For a smally, we have an expansion
e 1 e—’l/2 e—’l/2 e"l/2
— - S (B4)
l1—en  2sinhn/2) n 24
Similarly, we have
—kn —(k=1)n/2 —(k=1)n/2
€ € 1\ e
= —k+=Z) —+... (B5)
1L—efn@—emn) kn? 24
and
e e (m—n2—n3)/2
(1—em)(1—e™®)  8sinhyi/2) sinh(z/2) sinh(ya/2)
e (m—m2—n3)/2  g@=(m—n2-n3)/2 77% + 77% + 77%
— _ +..- (B6)
n1M213 24 n11m213
From equation (B4),
T 0 _ln-in/2
'€ '€ 1
> =~ = ——log(1 — ze "?). (B7)
= 1l-e = In n
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